https://www.amazon.com/dp/B0DLH7NQKB CO2 REMOVAL SOLUTIONS: FOR THE CO2 MOLECULE THERE ARE 2 OXYGEN ATOMS WHICH CONTRIBUTE 2 ELECTRONS EACH, SO ADDING THE 4 ELECTRONS TO THE VALANCE SHELLS TOTALS 8 ELECTRONS. THE CARBON HAS NO CHARGE, SO NO EXTRA ELECTRONS ARE NEEDED SO THE FINAL TOTAL IS 8.
"WHEN NEGATIVE ELECTRONS ARE SUPPLEMENTED ACCORDINGLY THE COVALENT BONDS ARE LOOSENED. THIS CREATES A CATABOLIC PROCESS OF CARBON RELEASE BACK INTO ITS ORIGINAL FORM AS WELL AS OXYGEN. INCREASING OXYGEN LEVELS IN THE ATMOSPHERE HEALING OCEAN ACIDIFICATION. NEGATIVE IONS ARE ANTI-BACTERIAL, ANTI-FUNGAL AND ANTI-VIRAL, WHEN ADDRESING OCEAN BACTERIAL INFECTION THERE ARE FEW THINGS THAT CAN CURE A MASS OCEAN BACTERIA AND OCEAN ACIDIFICATION. WHEN FIBONACCI SEQUENCE IS INTRODUCED THE OCEAN ACOUSTICS WILL PERMEATE THE OCEANS, HELPING MARINE LIFE, MONARCHS, BEES & BIRD MIGRATION ATTAIN HOMEOSTASIS.”~ MGW
All Xprize funds will go to every participant in Carbon Removal project. Magnetic H- Obelisks are emerging new technologies that will require the assistance of research, land use, funding.
MAGNETIC OBELISK -H ART INSTALLATION 10,000 Tons A Year, 1,000 year durability
Simple Co2 Removal Solutions: For the CO2 molecule there are 2 oxygen atoms which contribute 2 electrons each, so adding the 4 electrons to the valance shells totals 8 electrons. The carbon has no charge, so no extra electrons are needed so the final total is 8.
"When negative electrons are supplemented accordingly the covalent bonds are loosened. This creates a catabolic process of Carbon release back into its original form as well as oxygen. Increasing oxygen levels in the atmosphere. Healing ocean acidification. When Fibonacci sequence is introduced the ocean acustics will permeate the oceans, helping marine life attain homeostasis.”~ MGW
When we understand the atomic structure we can control the atomic structure. When we approach C02 with hope and not fear we can understand how to heal the earths landscapes. Carbon dioxide is found in the gas state at room temperature, and as the source of available carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. When we have an excess we are off balance. So our society and our people are off balance.
In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Nightmares and horror stories have permeated our culture. Movies, books, groups to bring balance and homeostasis to our environment. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate (HCO), which causes ocean acidification as atmospheric CO2 levels increase. This is much like osteoporosis of the body. When we do not have enough negative ions in the body, the body begins to age, wither and die. That is the heat or positive ions are plentiful. Carbon dioxide is a trace gasin Earth's atmosphere at 421 parts per million (ppm), or about 0.04% (as of May 2022) having risen from pre-industrial levels of 280 ppm or about 0.025%.Burning fossil fuels is the primary cause of these increased CO2 concentrations and also the primary cause of climate change. Its concentration in Earth's pre-industrial atmosphere since late in the Precambrian was regulated by organisms and geological phenomena. Plants, algae and cyanobacteria use energy from sunlight to synthesize carbohydrates from carbon dioxide and water in a process called photosynthesis, which produces oxygen as a waste product. In turn, oxygen is consumed and CO2 is released as waste by all aerobic organisms when they metabolize organic compounds to produce energy by respiration. CO2 is released from organic materials when they decay or combust, such as in forest fires. Since plants require CO2 for photosynthesis, and humans and animals depend on plants for food, CO2 is necessary for the survival of life on earth.
Talking to my conspiracy friend we all need one of those to keep us on our ever watchful toes says that if we get rid of Co2 we’ll die. It’s true, we can’t get rid of it all. My reply but we can balance like we balance the energy in our bodies doing Tai Chi.
Carbon dioxide is 53% more dense than dry air, but is long lived and thoroughly mixes in the atmosphere. This creates the Carbon Removal problem. About half of excess CO2 emissions to the atmosphere are absorbed by land and ocean carbon sinks. These sinks can become saturated and are volatile, as decay and wildfires result in the CO2 being released back into the atmosphere. Magnetic Obelisks would not only address the CO2 levels but would address forest fires and animal health and preservation.
CO2 is eventually sequestered (stored for the long term) in rocks and organic deposits like coal, petroleum and natural gas. Sequestered CO2 is released into the atmosphere through burning fossil fuels or naturally by volcanoes, hot springs, geysers, and when carbonate rocksdissolve in water or react with acids. We have lived with Co2 levels for a long time, now can we learn how to address our toxic environment by correcting our adolecent selves. We are off balance, creating a toxic environment.
CO2 is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is a byproduct of fermentation of sugars in bread, beer and wine making, and is added to carbonated beverages like seltzer and beer for effervescence. It has a sharp and acidic odor and generates the taste of soda water in the mouth, but at normally encountered concentrations it is odorless. Their is only so many soda drinks we can pour Co2 in. We have to think big, we have to think outside the box. We have to think creatively, and we have to be brave and we…
Have to act fast.
Structure
The symmetry of a carbon dioxide molecule is linear and centrosymmetric at its equilibrium geometry. The length of the carbon-oxygen bond in carbon dioxide is 116.3 pm, noticeably shorter than the roughly 140-pm length of a typical single C–O bond, and shorter than most other C–O multiply bonded functional groups such as carbonyls. Since it is centrosymmetric, the molecule has no electric dipole moment.
Hydrogen Obelisk would loosen the covenant bonds of Oxygen naturally by introducing more negative ions into the atmosphere. Supplying negative ions would change the carbon structure bringing it back into it’s non toxic state. Cleaning the air quite easily and quickly.
As a linear triatomic molecule, CO2 has four vibrational modes. In the symmetric and the antisymmetric stretching modes, the atoms move along the axis of the molecule. There are two bending modes, which are degenerate, meaning that they have the same frequency and same energy, because of the symmetry of the molecule. When a molecule touches a surface or touches another molecule, the two bending modes can differ in frequency because the interaction is different for the two modes. Some of the vibrational modes are observed in the infrared (IR) spectrum: the antisymmetric stretching mode at wavenumber 2349 cm−1 (wavelength 4.25 μm) and the degenerate pair of bending modes at 667 cm−1 (wavelength 15 μm). The symmetric stretching mode does not create an electric dipole so is not observed in IR spectroscopy, but it is detected in by Raman spectroscopy at 1388 cm−1 (wavelength 7.2 μm). In the gas phase, carbon dioxide molecules undergo significant vibrational motions and do not keep a fixed structure. However, in a Coulomb explosion imaging experiment, an instantaneous image of the molecular structure can be deduced. Such an experiment has been performed for carbon dioxide. The result of this experiment, and the conclusion of theoretical calculations based on an ab initiopotential energy surface of the molecule, is that none of the molecules in the gas phase are ever exactly linear. This counter-intuitive result is trivially due to the fact that the nuclear motion volume element vanishes for linear geometries.This is so for all molecules (except diatomics!).
Aqueous Solution
Carbon dioxide is soluble in water, in which it reversibly forms H2CO3 (carbonic acid), which is a weak acid since its ionization in water is incomplete. When you understand negative ions your understand how to bring these element back into homeostasis. That is if you look at the problem of negative ion depletion you can correct the acidification of the oceans through negative ion supplementation. CO2 + H2O ⇌ H2CO3 The hydration equilibrium constant of carbonic acid is, at 25 °C:
Hence, the majority of the carbon dioxide is not converted into carbonic acid, but remains as CO2 molecules, not affecting the pH. Understanding ocean PH is like understanding the PH of the body. When you approach environmental problems by understanding negative ions you reverse Co2 levels in the air and in the ocean naturally. The trick is -H not +H.
H+
The relative concentrations of CO2, H2CO3, and the deprotonated forms HCO (bicarbonate) and CO(carbonate) depend on the pH. As shown in a Bjerrum plot, in neutral or slightly alkaline water (pH 6.5), the bicarbonate form predominates (50%) becoming the most prevalent (95%) at the pH of seawater. In very alkaline water (pH 10.4), the predominant (50%) form is carbonate. The oceans, being mildly alkaline with typical pH = 8.2–8.5, contain about 120 mg of bicarbonate per liter. Can we use Magnetic Hydrogen Obelisks to control the pH of the ocean. I think we can. We don’t want our oceans to alkaline or to acidic. Can we understand and control the ocean pH. We should be able to by now. What’s going on?
Why don’t we understand magnetism? Why don’t we know how magnetism affects our oceans? We have a retarded school system, and we are it’s retarded children. And they say truth hurts. But our ignorance is hurting the earth, the animals, the children and yes ourselves. How can we correct our behavior so we move into this Aquarian age equipped with the proper knowledge and not ignorance. Being diprotic, carbonic acid has two acid dissociation constants, the first one for the dissociation into the bicarbonate (also called hydrogen carbonate) ion (HCOH2CO3⇌ HCO + H+ Ka1 = 2.5 × 10−4 mol/L; pKa1 = 3.6 at 25 °C.[19] This is the true first acid dissociation constant, defined as
where the denominator includes only covalently bound H2CO3 and does not include hydrated CO2(aq). The much smaller and often-quoted value near 4.16 × 10−7 is an apparent value calculated on the (incorrect) assumption that all dissolved CO2 is present as carbonic acid, so that
Since most of the dissolved CO2 remains as CO2 molecules, Ka1(apparent) has a much larger denominator and a much smaller value than the true Ka1.
The bicarbonate ion is an amphoteric species that can act as an acid or as a base, depending on pH of the solution. At high pH, it dissociates significantly into the carbonate ion (COHCO ⇌ CO
+ H+ Ka2 = 4.69 × 10−11 mol/L; pKa2 = 10.329 In organisms, carbonic acid production is catalysed by the enzyme known as carbonic anhydrase. This anion is a little devil. We need a negative ion hydrogen to correct these oceanic acid reflexes.
Chemical reactions
CO2 is a potent electrophile having an electrophilic reactivity that is comparable to benzaldehyde or strong α,β-unsaturated carbonyl compounds. However, unlike electrophiles of similar reactivity, the reactions of nucleophiles with CO2 are thermodynamically less favored and are often found to be highly reversible. The reversible reaction of carbon dioxide with amines to make carbamates is used in CO2 scrubbers and has been suggested as a possible starting point for carbon capture and storage by amine gas treating.
Unfortunately, with a limited understanding of Magnetism we cannot correct the situation. Our science is outdated and incorrect. So we don’t know how to help ourselves. It’s like a type of learned helplessness because we can’t fathom that we don’t know the answers. But we cannot fix the problems of humanity and the earth without proper understanding of our true inheritance. But let’s continue on the chemical route for bit: Only very strong nucleophiles, like the carbanions provided by Grignard reagents and organolithium compounds react with CO2 to give carboxylates: MR + CO2→ RCO2M where M = Li or MgBr and R = alkyl or aryl. In metal carbon dioxide complexes, CO2 serves as a ligand, which can facilitate the conversion of CO2 to other chemicals. The reduction of CO2 to CO is ordinarily a difficult and slow reaction. However, this reaction speeds up when we introduce negative ions into the mix. A slow reaction in a chemical solution world mean, we know that nature will eventually take back what is hers. If you leave a city the earth will reclaim it. If you leave the ocean alone, it will self correct. Our inability to live in harmony with nature brings us to Co2 Removal methods. CO2 + 2 e− + 2 H+→ CO + H2O Photoautotrophs (i.e. plants and cyanobacteria) use the energy contained in sunlight to photosynthesize simple sugars from CO2 absorbed from the air and water: n CO2 + n H2O → (CH2O)n + n O2 The redox potential for this reaction near pH 7 is about −0.53 V versus the standard hydrogen electrode. The nickel-containing enzyme carbon monoxide dehydrogenase catalyses this process.
Supercritical Carbon Dioxide
Carbon dioxide is colorless. At low concentrations, the gas is odorless; however, at sufficiently high concentrations, it has a sharp, acidic odor.At standard temperature and pressure, the density of carbon dioxide is around 1.98 kg/m3, about 1.53 times that of air. Carbon dioxide has no liquid state at pressures below 0.51795(10) MPa (5.11177(99) atm). At a pressure of 1 atm (0.101325 MPa), the gas deposits directly to a solid at temperatures below 194.6855(30) K (−78.4645(30) °C) and the solid sublimes directly to a gas above this temperature. In its solid state, carbon dioxide is commonly called dry ice. Liquid carbon dioxide forms only at pressures above 0.51795(10) MPa (5.11177(99) atm); the triple point of carbon dioxide is 216.592(3) K (−56.558(3) °C) at 0.51795(10) MPa (5.11177(99) atm) (see phase diagram). The critical point is 304.128(15) K (30.978(15) °C) at 7.3773(30) MPa (72.808(30) atm). Another form of solid carbon dioxide observed at high pressure is an amorphous glass-like solid. This form of glass, called carbonia, is produced by supercooling heated CO2 at extreme pressures (40–48 GPa, or about 400,000 atmospheres) in a diamond anvil. This discovery confirmed the theory that carbon dioxide could exist in a glass state similar to other members of its elemental family, like silicon dioxide (silica glass) and germanium dioxide. Unlike silica and germania glasses, however, carbonia glass is not stable at normal pressures and reverts to gas when pressure is released. At temperatures and pressures above the critical point, carbon dioxide behaves as a supercritical fluid known as supercritical carbon dioxide.
Carbon fixation is a biochemical process by which atmospheric carbon dioxide is incorporated by plants, algae and (cyanobacteria) into energy-rich organic molecules such as glucose, thus creating their own food by photosynthesis. Photosynthesis uses carbon dioxide and water to produce sugars from which other organic compounds can be constructed, and oxygen is produced as a by-product.
RuBisCO is thought to be the single most abundant protein on Earth. Phototrophs use the products of their photosynthesis as internal food sources and as raw material for the biosynthesis of more complex organic molecules, such as polysaccharides, nucleic acids, and proteins. These are used for their own growth, and also as the basis of the food chains and webs that feed other organisms, including animals such as ourselves. Some important phototrophs, the coccolithophores synthesise hard calcium carbonate scales.A globally significant species of coccolithophore is Emiliania huxleyi whose calcite scales have formed the basis of many sedimentary rocks such as limestone, where what was previously atmospheric carbon can remain fixed for geological timescales.
Plants can grow as much as 50% faster in concentrations of 1,000 ppm CO2 when compared with ambient conditions, though this assumes no change in climate and no limitation on other nutrients. Elevated CO2 levels cause increased growth reflected in the harvestable yield of crops, with wheat, rice and soybean all showing increases in yield of 12–14% under elevated CO2 in FACE experiments. Increased atmospheric CO2 concentrations result in fewer stomata developing on plants which leads to reduced water usage and increased water-use efficiency. Studies using FACE have shown that CO2 enrichment leads to decreased concentrations of micronutrients in crop plants. This may have knock-on effects on other parts of ecosystems as herbivores will need to eat more food to gain the same amount of protein. The concentration of secondary metabolites such as phenylpropanoids and flavonoids can also be altered in plants exposed to high concentrations of CO2.[40][41] Plants also emit CO2 during respiration, and so the majority of plants and algae, which use C3 photosynthesis, are only net absorbers during the day. Though a growing forest will absorb many tons of CO2 each year, a mature forest will produce as much CO2 from respiration and decomposition of dead specimens (e.g., fallen branches) as is used in photosynthesis in growing plants. Contrary to the long-standing view that they are carbon neutral, mature forests can continue to accumulate carbon and remain valuable carbon sinks, helping to maintain the carbon balance of Earth's atmosphere. Additionally, and crucially to life on earth, photosynthesis by phytoplankton consumes dissolved CO2 in the upper ocean and thereby promotes the absorption of CO2 from the atmosphere.
Toxicity
Carbon dioxide content in fresh air (averaged between sea-level and 10 kPa level, i.e., about 30 km (19 mi) altitude) varies between 0.036% (360 ppm) and 0.041% (412 ppm), depending on the location. CO2 is an asphyxiant gas and not classified as toxic or harmful in accordance with Globally Harmonized System of Classification and Labelling of Chemicals standards of United Nations Economic Commission for Europe by using the OECD Guidelines for the Testing of Chemicals. In concentrations up to 1% (10,000 ppm), it will make some people feel drowsy and give the lungs a stuffy feeling. Concentrations of 7% to 10% (70,000 to 100,000 ppm) may cause suffocation, even in the presence of sufficient oxygen, manifesting as dizziness, headache, visual and hearing dysfunction, and unconsciousness within a few minutes to an hour. The physiological effects of acute carbon dioxide exposure are grouped together under the term hypercapnia, a subset of asphyxiation. Because it is heavier than air, in locations where the gas seeps from the ground (due to sub-surface volcanic or geothermal activity) in relatively high concentrations, without the dispersing effects of wind, it can collect in sheltered/pocketed locations below average ground level, causing animals located therein to be suffocated. Carrion feeders attracted to the carcasses are then also killed. Children have been killed in the same way near the city of Goma by CO2 emissions from the nearby volcano Mount Nyiragongo. Adaptation to increased concentrations of CO2 occurs in humans, including modified breathing and kidney bicarbonate production, in order to balance the effects of blood acidification (acidosis). Several studies suggested that 2.0 percent inspired concentrations could be used for closed air spaces (e.g. a submarine) since the adaptation is physiological and reversible, as deterioration in performance or in normal physical activity does not happen at this level of exposure for five days.Yet, other studies show a decrease in cognitive function even at much lower levels.Also, with ongoing respiratory acidosis, adaptation or compensatory mechanisms will be unable to reverse such condition. 1%
There are few studies of the health effects of long-term continuous CO2 exposure on humans and animals at levels below 1%. Occupational CO2 exposure limits have been set in the United States at 0.5% (5000 ppm) for an eight-hour period. At this CO2 concentration, International Space Station crew experienced headaches, lethargy, mental slowness, emotional irritation, and sleep disruption.Studies in animals at 0.5% CO2 have demonstrated kidney calcification and bone loss after eight weeks of exposure. A study of humans exposed in 2.5 hour sessions demonstrated significant negative effects on cognitive abilities at concentrations as low as 0.1% (1000 ppm) CO2 likely due to CO2 induced increases in cerebral blood flow. Another study observed a decline in basic activity level and information usage at 1000 ppm, when compared to 500 ppm. However a review of the literature found that most studies on the phenomenon of carbon dioxide induced cognitive impairment to have a small effect on high-level decision making and most of the studies were confounded by inadequate study designs, environmental comfort, uncertainties in exposure doses and differing cognitive assessments used. Similarly a study on the effects of the concentration of CO2 in motorcycle helmets has been criticized for having dubious methodology in not noting the self-reports of motorcycle riders and taking measurements using mannequins. Further when normal motorcycle conditions were achieved (such as highway or city speeds) or the visor was raised the concentration of CO2 declined to safe levels (0.2%).
Canary in a coal mine
Poor ventilation is one of the main causes of excessive CO2 concentrations in closed spaces, leading to poor indoor air quality. Carbon dioxide differential above outdoor concentrations at steady state conditions (when the occupancy and ventilation system operation are sufficiently long that CO2 concentration has stabilized) are sometimes used to estimate ventilation rates per person.Higher CO2 concentrations are associated with occupant health, comfort and performance degradation. ASHRAE Standard 62.1–2007 ventilation rates may result in indoor concentrations up to 2,100 ppm above ambient outdoor conditions. Thus if the outdoor concentration is 400 ppm, indoor concentrations may reach 2,500 ppm with ventilation rates that meet this industry consensus standard. Concentrations in poorly ventilated spaces can be found even higher than this (range of 3,000 or 4,000 ppm). Miners, who are particularly vulnerable to gas exposure due to insufficient ventilation, referred to mixtures of carbon dioxide and nitrogen as "blackdamp", "choke damp" or "stythe". Before more effective technologies were developed, miners would frequently monitor for dangerous levels of blackdamp and other gases in mine shafts by bringing a caged canary with them as they worked. The canary is more sensitive to asphyxiant gases than humans, and as it became unconscious would stop singing and fall off its perch. The Davy lamp could also detect high levels of blackdamp (which sinks, and collects near the floor) by burning less brightly, while methane, another suffocating gas and explosion risk, would make the lamp burn more brightly. In February 2020, three people died from suffocation at a party in Moscow when dry ice (frozen CO2) was added to a swimming pool to cool it down.A similar accident occurred in 2018 when a woman died from CO2 fumes emanating from the large amount of dry ice she was transporting in her car.
Indoor air
Humans spend more and more time in a confined atmosphere (around 80-90% of the time in a building or vehicle). According to the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) and various actors in France, the CO2 rate in the indoor air of buildings (linked to human or animal occupancy and the presence of combustion installations), weighted by air renewal, is “usually between about 350 and 2,500 ppm”. In homes, schools, nurseries and offices, there are no systematic relationships between the levels of CO2 and other pollutants, and indoor CO2 is statistically not a good predictor of pollutants linked to outdoor road (or air, etc.) traffic. CO2 is the parameter that changes the fastest (with hygrometry and oxygen levels when humans or animals are gathered in a closed or poorly ventilated room). In poor countries, many open hearths are sources of CO2 and CO emitted directly into the living environment.
Outdoor areas with elevated concentrations
Local concentrations of carbon dioxide can reach high values near strong sources, especially those that are isolated by surrounding terrain. At the Bossoleto hot spring near Rapolano Terme in Tuscany, Italy, situated in a bowl-shaped depression about 100 m (330 ft) in diameter, concentrations of CO2 rise to above 75% overnight, sufficient to kill insects and small animals. After sunrise the gas is dispersed by convection.High concentrations of CO2 produced by disturbance of deep lake water saturated with CO2 are thought to have caused 37 fatalities at Lake Monoun, Cameroon in 1984 and 1700 casualties at Lake Nyos, Cameroon in 1986.
Human physiology
The body produces approximately 2.3 pounds (1.0 kg) of carbon dioxide per day per person, containing 0.63 pounds (290 g) of carbon. In humans, this carbon dioxide is carried through the venous system and is breathed out through the lungs, resulting in lower concentrations in the arteries. The carbon dioxide content of the blood is often given as the partial pressure, which is the pressure which carbon dioxide would have had if it alone occupied the volume. In humans, the blood carbon dioxide contents is shown in the adjacent table. CO2 is carried in blood in three different ways. (Exact percentages vary between arterial and venous blood).
Majority (about 70% to 80%) is converted to bicarbonate ions HCO− 3 by the enzyme carbonic anhydrase in the red blood cells,[74] by the reaction:
Hemoglobin, the main oxygen-carrying molecule in red blood cells, carries both oxygen and carbon dioxide. However, the CO2 bound to hemoglobin does not bind to the same site as oxygen. Instead, it combines with the N-terminal groups on the four globin chains. However, because of allosteric effects on the hemoglobin molecule, the binding of CO2 decreases the amount of oxygen that is bound for a given partial pressure of oxygen. This is known as the Haldane Effect, and is important in the transport of carbon dioxide from the tissues to the lungs. Conversely, a rise in the partial pressure of CO2 or a lower pH will cause offloading of oxygen from hemoglobin, which is known as the Bohr effect.
Air Hunger
Carbon dioxide is one of the mediators of local autoregulation of blood supply. If its concentration is high, the capillaries expand to allow a greater blood flow to that tissue. Bicarbonate ions are crucial for regulating blood pH. A person's breathing rate influences the level of CO2 in their blood. Breathing that is too slow or shallow causes respiratory acidosis, while breathing that is too rapid leads to hyperventilation, which can cause respiratory alkalosis. Although the body requires oxygen for metabolism, low oxygen levels normally do not stimulate breathing. Rather, breathing is stimulated by higher carbon dioxide levels. As a result, breathing low-pressure air or a gas mixture with no oxygen at all (such as pure nitrogen) can lead to loss of consciousness without ever experiencing air hunger. This is especially perilous for high-altitude fighter pilots. It is also why flight attendants instruct passengers, in case of loss of cabin pressure, to apply the oxygen mask to themselves first before helping others; otherwise, one risks losing consciousness. The respiratory centers try to maintain an arterial CO2 pressure of 40 mmHg. With intentional hyperventilation, the CO2 content of arterial blood may be lowered to 10–20 mmHg (the oxygen content of the blood is little affected), and the respiratory drive is diminished. This is why one can hold one's breath longer after hyperventilating than without hyperventilating. This carries the risk that unconsciousness may result before the need to breathe becomes overwhelming, which is why hyperventilation is particularly dangerous before free diving.
Atmosphere
In Earth's atmosphere, carbon dioxide is a trace gas that plays an integral part in the greenhouse effect, carbon cycle, photosynthesis and oceanic carbon cycle. It is one of several greenhouse gases in the atmosphere of Earth. The current global average concentration of CO2 in the atmosphere is 421 ppm as of May 2022 (0.04%). This is an increase of 50% since the start of the Industrial Revolution, up from 280 ppm during the 10,000 years prior to the mid-18th century.The increase is due to human activity. Burning fossil fuels is the main cause of these increased CO2 concentrations and also the main cause of climate change. Other large anthropogenic sources include cement production, deforestation, and biomass burning. While transparent to visible light, carbon dioxide is a greenhouse gas, absorbing and emitting infrared radiation at its two infrared-active vibrational frequencies. CO2 absorbs and emits infrared radiation at wavelengths of 4.26 μm (2,347 cm−1) (asymmetric stretching vibrational mode) and 14.99 μm (667 cm−1) (bending vibrational mode). It plays a significant role in influencing Earth's surface temperature through the greenhouse effect. Light emission from the Earth's surface is most intense in the infrared region between 200 and 2500 cm−1, as opposed to light emission from the much hotter Sun which is most intense in the visible region. Absorption of infrared light at the vibrational frequencies of atmospheric CO2 traps energy near the surface, warming the surface and the lower atmosphere. Less energy reaches the upper atmosphere, which is therefore cooler because of this absorption. Increases in atmospheric concentrations of CO2 and other long-lived greenhouse gases such as methane, nitrous oxide and ozone increase the absorption and emission of infrared radiation by the atmosphere, causing the observed rise in average global temperature and ocean acidification. Another direct effect is the CO2 fertilization effect. These changes cause a range of indirect effects of climate change on the physical environment, ecosystems and human societies. Carbon dioxide exerts a larger overall warming influence than all of the other greenhouse gases combined. It has an atmospheric lifetime that increases with the cumulative amount of fossil carbon extracted and burned, due to the imbalance that this activity has imposed on Earth's fast carbon cycle.This means that some fraction (a projected 20–35%) of the fossil carbon transferred thus far will persist in the atmosphere as elevated CO2 levels for many thousands of years after these carbon transfer activities begin to subside.The carbon cycle is a biogeochemical cycle in which carbon is exchanged between the Earth's oceans, soil, rocks and the biosphere. Plants and other photoautotrophs use solar energy to produce carbohydrate from atmospheric carbon dioxide and water by photosynthesis. Almost all other organisms depend on carbohydrate derived from photosynthesis as their primary source of energy and carbon compounds. The present atmospheric concentration of CO2 is the highest for 14 million years. Concentrations of CO2 in the atmosphere were as high as 4,000 ppm during the Cambrian period about 500 million years ago, and as low as 180 ppm during the Quaternary glaciation of the last two million years. Reconstructed temperature records for the last 420 million years indicate that atmospheric CO2 concentrations peaked at approximately 2,000 ppm during the Devonian (400 Ma) period, and again in the Triassic (220–200 Ma) period and was four times current levels during the Jurassic period (201–145 Ma).
Ocean acidification
Carbon dioxide dissolves in the ocean to form carbonic acid (H2CO3).There is about fifty times as much carbon dioxide dissolved in the oceans as exists in the atmosphere. The oceans act as an enormous carbon sink, and have taken up about a third of CO2 emitted by human activity.
Ocean acidification is the decrease in the pH of the Earth's ocean. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of ocean acidification, with atmospheric carbon dioxide (CO2) levels exceeding 410 ppm (in 2020). CO2 from the atmosphere is absorbed by the oceans. This produces carbonic acid (H2CO3) which dissociates into a bicarbonate ion (HCO−3) and a hydrogen ion (H+). The presence of free hydrogen ions (H+) lowers the pH of the ocean, increasing acidity (this does not mean that seawater is acidic yet; it is still alkaline, with a pH higher than 8). Marine calcifying organisms, such as mollusks and corals, are especially vulnerable because they rely on calcium carbonate to build shells and skeletons. A change in pH by 0.1 represents a 26% increase in hydrogen ion concentration in the world's oceans (the pH scale is logarithmic, so a change of one in pH units is equivalent to a tenfold change in hydrogen ion concentration). Sea-surface pH and carbonate saturation states vary depending on ocean depth and location. Colder and higher latitude waters are capable of absorbing more CO2. This can cause acidity to rise, lowering the pH and carbonate saturation levels in these areas. Other factors that influence the atmosphere-ocean CO2 exchange, and thus local ocean acidification, include: ocean currents and upwelling zones, proximity to large continental rivers, sea ice coverage, and atmospheric exchange with nitrogen and sulfur from fossil fuel burning and agriculture.
HABITATS
Changes in ocean chemistry can have extensive direct and indirect effects on organisms and their habitats. One of the most important repercussions of increasing ocean acidity relates to the production of shells out of calcium carbonate (CaCO3).This process is called calcification and is important to the biology and survival of a wide range of marine organisms. Calcification involves the precipitation of dissolved ions into solid CaCO3 structures, structures for many marine organisms, such as coccolithophores, foraminifera, crustaceans, mollusks, etc. After they are formed, these CaCO3 structures are vulnerable to dissolution unless the surrounding seawater contains saturating concentrations of carbonate ions. Very little of the extra carbon dioxide that is added into the ocean remains as dissolved carbon dioxide. The majority dissociates into additional bicarbonate and free hydrogen ions. The increase in hydrogen is larger than the increase in bicarbonate, creating an imbalance in the reaction: HCO−3 ⇌ CO2− 3 + H+ To maintain chemical equilibrium, some of the carbonate ions already in the ocean combine with some of the hydrogen ions to make further bicarbonate. Thus the ocean's concentration of carbonate ions is reduced, removing an essential building block for marine organisms to build shells, or calcify: Ca2+ + CO2−3⇌ CaCO3
Biological Evolution
Carbon dioxide is a by-product of the fermentation of sugar in the brewing of beer, whisky and other alcoholic beverages and in the production of bioethanol. Yeast metabolizes sugar to produce CO2 and ethanol, also known as alcohol, as follows: C6H12O6→ 2 CO2 + 2 CH3CH2OH All aerobic organisms produce CO2 when they oxidize carbohydrates, fatty acids, and proteins. The large number of reactions involved are exceedingly complex and not described easily. Refer to (cellular respiration, anaerobic respiration and photosynthesis). The equation for the respiration of glucose and other monosaccharides is: C6H12O6 + 6 O2→ 6 CO2 + 6 H2O Anaerobic organisms decompose organic material producing methane and carbon dioxide together with traces of other compounds. Regardless of the type of organic material, the production of gases follows well defined kinetic pattern. Carbon dioxide comprises about 40–45% of the gas that emanates from decomposition in landfills (termed "landfill gas"). Most of the remaining 50–55% is methane.]
Carbon dioxide can be obtained by distillation from air, but the method is inefficient. Industrially, carbon dioxide is predominantly an unrecovered waste product, produced by several methods which may be practiced at various scales.
The combustion of all carbon-based fuels, such as methane (natural gas), petroleum distillates (gasoline, diesel, kerosene, propane), coal, wood and generic organic matter produces carbon dioxide and, except in the case of pure carbon, water. As an example, the chemical reaction between methane and oxygen: CH4 + 2 O2→ CO2 + 2 H2O Iron is reduced from its oxides with coke in a blast furnace, producing pig iron and carbon dioxide: Fe2O3 + 3 CO → 3 CO2 + 2 Fe
By-product from hydrogen production
Carbon dioxide is a byproduct of the industrial production of hydrogen by steam reforming and the water gas shift reaction in ammonia production. Do we understand magnetic hydrogen? Do we understand metallic hydrogen. The answer is no. Because we are caught in a Newtonian model of physics our schools are outdated and so are our methods. We cannot cure the ills of the world thinking like a dinassaur. We have to think like and ET. Yes, we have to think like an extra-terestrial. Why, because if their is intelligent life in space we have to understand why they stay away from humans and our world. Probably because our science sucks. But back to the basics: These processes begin with the reaction of water and natural gas (mainly methane).This is a major source of food-grade carbon dioxide for use in carbonation of beer and soft drinks, and is also used for stunning animals such as poultry. In the summer of 2018 a shortage of carbon dioxide for these purposes arose in Europe due to the temporary shut-down of several ammonia plants for maintenance.
Thermal decomposition
It is produced by thermal decomposition of limestone, CaCO3 by heating (calcining) at about 850 °C (1,560 °F), in the manufacture of quicklime (calcium oxide, CaO), a compound that has many industrial uses: CaCO3→ CaO + CO2 Acids liberate CO2 from most metal carbonates. Consequently, it may be obtained directly from natural carbon dioxide springs, where it is produced by the action of acidified water on limestone or dolomite. The reaction between hydrochloric acid and calcium carbonate (limestone or chalk) is shown below: CaCO3 + 2 HCl → CaCl2 + H2CO3 The carbonic acid (H2CO3) then decomposes to water and CO2: H2CO3→ CO2 + H2O Such reactions are accompanied by foaming or bubbling, or both, as the gas is released. They have widespread uses in industry because they can be used to neutralize waste acid streams.
Our Food Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. The compound has varied commercial uses but one of its greatest uses as a chemical is in the production of carbonated beverages; it provides the sparkle in carbonated beverages such as soda water, beer and sparkling wine.
In the chemical industry, carbon dioxide is mainly consumed as an ingredient in the production of urea, with a smaller fraction being used to produce methanol and a range of other products. Some carboxylic acid derivatives such as sodium salicylate are prepared using CO2 by the Kolbe–Schmitt reaction. In addition to conventional processes using CO2 for chemical production, electrochemical methods are also being explored at a research level. In particular, the use of renewable energy for production of fuels from CO2 (such as methanol) is attractive as this could result in fuels that could be easily transported and used within conventional combustion technologies but have no net CO2 emissions. Plants require carbon dioxide to conduct photosynthesis. The atmospheres of greenhouses may (if of large size, must) be enriched with additional CO2 to sustain and increase the rate of plant growth. At very high concentrations (100 times atmospheric concentration, or greater), carbon dioxide can be toxic to animal life, so raising the concentration to 10,000 ppm (1%) or higher for several hours will eliminate pests such as whiteflies and spider mites in a greenhouse.
Carbon dioxide is a food additive used as a propellant and acidity regulator in the food industry. It is approved for usage in the EU (listed as E number E290), US and Australia and New Zealand (listed by its INS number 290). A candy called Pop Rocks is pressurized with carbon dioxide gas at about 4,000 kPa (40 bar; 580 psi). When placed in the mouth, it dissolves (just like other hard candy) and releases the gas bubbles with an audible pop. Leavening agents cause dough to rise by producing carbon dioxide. Baker's yeast produces carbon dioxide by fermentation of sugars within the dough, while chemical leaveners such as baking powder and baking soda release carbon dioxide when heated or if exposed to acids.
Carbon dioxide is used to produce carbonatedsoft drinks and soda water. Traditionally, the carbonation of beer and sparkling wine came about through natural fermentation, but many manufacturers carbonate these drinks with carbon dioxide recovered from the fermentation process. In the case of bottled and kegged beer, the most common method used is carbonation with recycled carbon dioxide. With the exception of British real ale, draught beer is usually transferred from kegs in a cold room or cellar to dispensing taps on the bar using pressurized carbon dioxide, sometimes mixed with nitrogen. The taste of soda water (and related taste sensations in other carbonated beverages) is an effect of the dissolved carbon dioxide rather than the bursting bubbles of the gas. Carbonic anhydrase 4 converts to carbonic acid leading to a sour taste, and also the dissolved carbon dioxide induces a somatosensory response.
Carbon dioxide in the form of dry ice is often used during the cold soak phase in winemaking to cool clusters of grapes quickly after picking to help prevent spontaneous fermentation by wild yeast. The main advantage of using dry ice over water ice is that it cools the grapes without adding any additional water that might decrease the sugar concentration in the grape must, and thus the alcohol concentration in the finished wine. Carbon dioxide is also used to create a hypoxic environment for carbonic maceration, the process used to produce Beaujolais wine. Carbon dioxide is sometimes used to top up wine bottles or other storage vessels such as barrels to prevent oxidation, though it has the problem that it can dissolve into the wine, making a previously still wine slightly fizzy. For this reason, other gases such as nitrogen or argon are preferred for this process by professional wine makers.
Carbon dioxide is often used to "stun" animals before slaughter."Stunning" may be a misnomer, as the animals are not knocked out immediately and may suffer distress.
Gas
Carbon dioxide is one of the most commonly used compressed gases for pneumatic (pressurized gas) systems in portable pressure tools. Carbon dioxide is also used as an atmosphere for welding, although in the welding arc, it reacts to oxidize most metals. Use in the automotive industry is common despite significant evidence that welds made in carbon dioxide are more brittle than those made in more inert atmospheres.When used for MIG welding, CO2 use is sometimes referred to as MAG welding, for Metal Active Gas, as CO2 can react at these high temperatures. It tends to produce a hotter puddle than truly inert atmospheres, improving the flow characteristics. Although, this may be due to atmospheric reactions occurring at the puddle site. This is usually the opposite of the desired effect when welding, as it tends to embrittle the site, but may not be a problem for general mild steel welding, where ultimate ductility is not a major concern. Carbon dioxide is used in many consumer products that require pressurized gas because it is inexpensive and nonflammable, and because it undergoes a phase transition from gas to liquid at room temperature at an attainable pressure of approximately 60 bar (870 psi; 59 atm), allowing far more carbon dioxide to fit in a given container than otherwise would. Life jackets often contain canisters of pressured carbon dioxide for quick inflation. Aluminium capsules of CO2 are also sold as supplies of compressed gas for air guns, paintball markers/guns, inflating bicycle tires, and for making carbonated water. High concentrations of carbon dioxide can also be used to kill pests. Liquid carbon dioxide is used in supercritical drying of some food products and technological materials, in the preparation of specimens for scanning electron microscopy and in the decaffeination of coffee beans.
Fire extinguisher
Carbon dioxide can be used to extinguish flames by flooding the environment around the flame with the gas. It does not itself react to extinguish the flame, but starves the flame of oxygen by displacing it. Some fire extinguishers, especially those designed for electrical fires, contain liquid carbon dioxide under pressure. Carbon dioxide extinguishers work well on small flammable liquid and electrical fires, but not on ordinary combustible fires, because they do not cool the burning substances significantly, and when the carbon dioxide disperses, they can catch fire upon exposure to atmospheric oxygen. They are mainly used in server rooms. Carbon dioxide has also been widely used as an extinguishing agent in fixed fire-protection systems for local application of specific hazards and total flooding of a protected space. International Maritime Organization standards recognize carbon-dioxide systems for fire protection of ship holds and engine rooms. Carbon-dioxide-based fire-protection systems have been linked to several deaths, because it can cause suffocation in sufficiently high concentrations. A review of CO2 systems identified 51 incidents between 1975 and the date of the report (2000), causing 72 deaths and 145 injuries.
Supercritical CO2 as solvent
Liquid carbon dioxide is a good solvent for many lipophilicorganic compounds and is used to remove caffeine from coffee. Carbon dioxide has attracted attention in the pharmaceutical and other chemical processing industries as a less toxic alternative to more traditional solvents such as organochlorides. It is also used by some dry cleaners for this reason. It is used in the preparation of some aerogels because of the properties of supercritical carbon dioxide. In medicine, up to 5% carbon dioxide (130 times atmospheric concentration) is added to oxygen for stimulation of breathing after apnea and to stabilize the O2/CO2 balance in blood. Carbon dioxide can be mixed with up to 50% oxygen, forming an inhalable gas; this is known as Carbogen and has a variety of medical and research uses. Another medical use are the mofette, dry spas that use carbon dioxide from post-volcanic discharge for therapeutic purposes. Supercritical CO2 is used as the working fluid in the Allam power cycle engine.
Carbon dioxide is used in enhanced oil recovery where it is injected into or adjacent to producing oil wells, usually under supercritical conditions, when it becomes miscible with the oil. This approach can increase original oil recovery by reducing residual oil saturation by 7–23% additional to primary extraction.[130] It acts as both a pressurizing agent and, when dissolved into the underground crude oil, significantly reduces its viscosity, and changing surface chemistry enabling the oil to flow more rapidly through the reservoir to the removal well.[131] In mature oil fields, extensive pipe networks are used to carry the carbon dioxide to the injection points. In enhanced coal bed methane recovery, carbon dioxide would be pumped into the coal seam to displace methane, as opposed to current methods which primarily rely on the removal of water (to reduce pressure) to make the coal seam release its trapped methane.
Bio transformation
It has been proposed that CO2 from power generation be bubbled into ponds to stimulate growth of algae that could then be converted into biodiesel fuel. A strain of the cyanobacteriumSynechococcus elongatus has been genetically engineered to produce the fuels isobutyraldehyde and isobutanol from CO2 using photosynthesis. Researchers have developed a process called electrolysis, using enzymes isolated from bacteria to power the chemical reactions which convert CO2 into fuels. Liquid and solid carbon dioxide are important refrigerants, especially in the food industry, where they are employed during the transportation and storage of ice cream and other frozen foods. Solid carbon dioxide is called "dry ice" and is used for small shipments where refrigeration equipment is not practical. Solid carbon dioxide is always below −78.5 °C (−109.3 °F) at regular atmospheric pressure, regardless of the air temperature. Liquid carbon dioxide (industry nomenclature R744 or R-744) was used as a refrigerant prior to the useof dichlorodifluoromethane (R12, a chlorofluorocarbon (CFC) compound). CO2 might enjoy a renaissance because one of the main substitutes to CFCs, 1,1,1,2-tetrafluoroethane (R134a, a hydrofluorocarbon (HFC) compound) contributes to climate change more than CO2 does. CO2 physical properties are highly favorable for cooling, refrigeration, and heating purposes, having a high volumetric cooling capacity. Due to the need to operate at pressures of up to 130 bars (1,900 psi; 13,000 kPa), CO2 systems require highly mechanically resistant reservoirs and components that have already been developed for mass production in many sectors. In automobile air conditioning, in more than 90% of all driving conditions for latitudes higher than 50°, CO2 (R744) operates more efficiently than systems using HFCs (e.g., R134a). Its environmental advantages (GWP of 1, non-ozone depleting, non-toxic, non-flammable) could make it the future working fluid to replace current HFCs in cars, supermarkets, and heat pump water heaters, among others. Coca-Cola has fielded CO2-based beverage coolers and the U.S. Army is interested in CO2 refrigeration and heating technology. Carbon dioxide is the lasing medium in a carbon-dioxide laser, which is one of the earliest type of lasers. Carbon dioxide can be used as a means of controlling the pH of swimming pools,[140] by continuously adding gas to the water, thus keeping the pH from rising. Among the advantages of this is the avoidance of handling (more hazardous) acids. Similarly, it is also used in the maintaining reef aquaria, where it is commonly used in calcium reactors to temporarily lower the pH of water being passed over calcium carbonate in order to allow the calcium carbonate to dissolve into the water more freely, where it is used by some corals to build their skeleton. Used as the primary coolant in the British advanced gas-cooled reactor for nuclear power generation. Carbon dioxide induction is commonly used for the euthanasia of laboratory research animals. Methods to administer CO2 include placing animals directly into a closed, prefilled chamber containing CO2, or exposure to a gradually increasing concentration of CO2. The American Veterinary Medical Association's 2020 guidelines for carbon dioxide induction state that a displacement rate of 30–70% of the chamber or cage volume per minute is optimal for the humane euthanasia of small rodents.[141]: 5, 31 Percentages of CO2 vary for different species, based on identified optimal percentages to minimize distress. Carbon dioxide is also used in several related cleaning and surface-preparation techniques.
History of discovery
Carbon dioxide was the first gas to be described as a discrete substance. In about 1640, the Flemish chemist Jan Baptist van Helmont observed that when he burned charcoal in a closed vessel, the mass of the resulting ash was much less than that of the original charcoal. His interpretation was that the rest of the charcoal had been transmuted into an invisible substance he termed a "gas" (from Greek "chaos") or "wild spirit" (spiritus sylvestris). The properties of carbon dioxide were further studied in the 1750s by the Scottish physician Joseph Black. He found that limestone (calcium carbonate) could be heated or treated with acids to yield a gas he called "fixed air". He observed that the fixed air was denser than air and supported neither flame nor animal life. Black also found that when bubbled through limewater (a saturated aqueous solution of calcium hydroxide), it would precipitate calcium carbonate. He used this phenomenon to illustrate that carbon dioxide is produced by animal respiration and microbial fermentation. In 1772, English chemist Joseph Priestley published a paper entitled Impregnating Water with Fixed Air in which he described a process of dripping sulfuric acid (or oil of vitriol as Priestley knew it) on chalk in order to produce carbon dioxide, and forcing the gas to dissolve by agitating a bowl of water in contact with the gas. Carbon dioxide was first liquefied (at elevated pressures) in 1823 by Humphry Davy and Michael Faraday. The earliest description of solid carbon dioxide (dry ice) was given by the French inventor Adrien-Jean-Pierre Thilorier, who in 1835 opened a pressurized container of liquid carbon dioxide, only to find that the cooling produced by the rapid evaporation of the liquid yielded a "snow" of solid CO2. Carbon dioxide in combination with nitrogen was known from earlier times as Blackdamp, stythe or choke damp,Along with the other types of damp it was encountered in mining operations and well sinking. Slow oxidation of coal and biological processes replaced the oxygen to create a suffocating mixture of nitrogen and carbon dioxide.
Ocean acidification means that the average ocean pH value is dropping over time. Ocean acidification is the decrease in the pH of the Earth's ocean. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of ocean acidification, with atmospheric carbon dioxide (CO2) levels exceeding 410 ppm (in 2020). CO2 from the atmosphere is absorbed by the oceans. This produces carbonic acid (H2CO3) which dissociates into a bicarbonate ion (HCO−3) and a hydrogen ion (H+). The presence of free hydrogen ions (H+) lowers the pH of the ocean, increasing acidity (this does not mean that seawater is acidic yet; it is still alkaline, with a pH higher than 8). Marine calcifying organisms, such as mollusks and corals, are especially vulnerable because they rely on calcium carbonate to build shells and skeletons. A change in pH by 0.1 represents a 26% increase in hydrogen ion concentration in the world's oceans (the pH scale is logarithmic, so a change of one in pH units is equivalent to a tenfold change in hydrogen ion concentration). Sea-surface pH and carbonate saturation states vary depending on ocean depth and location. Colder and higher latitude waters are capable of absorbing more CO2. This can cause acidity to rise, lowering the pH and carbonate saturation levels in these areas. Other factors that influence the atmosphere-ocean CO2 exchange, and thus local ocean acidification, include: ocean currents and upwelling zones, proximity to large continental rivers, sea ice coverage, and atmospheric exchange with nitrogen and sulfur from fossil fuel burning and agriculture. Decreased ocean pH has a range of potentially harmful effects for marine organisms. These include reduced calcification, depressed metabolic rates, lowered immune responses, and reduced energy for basic functions such as reproduction.[7] The effects of ocean acidification are therefore impacting marine ecosystems that provide food, livelihoods, and other ecosystem services for a large portion of humanity. Some 1 billion people are wholly or partially dependent on the fishing, tourism, and coastal management services provided by coral reefs. Ongoing acidification of the oceans may therefore threaten food chains linked with the oceans. The United Nations Sustainable Development Goal 14 ("Life below Water") has a target to "minimize and address the impacts of ocean acidification".Reducing carbon dioxide emissions (i.e., climate change mitigation measures) is the only solution that addresses the root cause of ocean acidification. Mitigation measures which achieve carbon dioxide removal from the atmosphere would help to reverse ocean acidification. The more specific ocean-based mitigation methods (e.g. ocean alkalinity enhancement, enhanced weathering) could also reduce ocean acidification. These strategies are being researched but generally have a low technology readiness level and many risks.IPCC (2022) Chapter 12: Cross sectoral perspectivesArchived 13 October 2022 at the Wayback Machine in Climate Change 2022: Mitigation of Climate ChangeContribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change] Archived 2 August 2022 at the Wayback Machine, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: Ocean acidification has occurred previously in Earth's history.[11] The resulting ecological collapse in the oceans had long-lasting effects on the global carbon cycle and climate.
Causes
Present-day (2021) atmospheric carbon dioxide (CO2) levels of around 415 ppm are around 50% higher than preindustrial concentrations.[13] The current elevated levels and rapid growth rates are unprecedented in the past 55 million years of the geological record. The source for this excess CO2 is clearly established as human driven, reflecting a mix of anthropogenic fossil fuel, industrial, and land-use/land-change emissions. The ocean acts as a carbon sink for anthropogenic CO2 and takes up roughly a quarter of total anthropogenic CO2 emissions.[14] However, the additional CO2 in the ocean results in a wholesale shift in seawater acid-base chemistry toward more acidic, lower pH conditions and lower saturation states for carbonate minerals used in many marine organism shells and skeletons. Cumulated since 1850, the ocean sink holds up to 175 ± 35 gigatons of carbon, with more than two-thirds of this amount (120 GtC) being taken up by the global ocean since 1960. Over the historical period, the ocean sink increased in pace with the exponential anthropogenic emissions increase. From 1850 until 2022, the ocean has absorbed 26 % of total anthropogenic emissions. Emissions during the period 1850–2021 amounted to 670 ± 65 gigatons of carbon and were partitioned among the atmosphere (41 %), ocean (26 %), and land (31 %). The carbon cycle describes the fluxes of carbon dioxide (CO 2) between the oceans, terrestrialbiosphere, lithosphere,and atmosphere. The carbon cycle involves both organic compounds such as cellulose and inorganic carbon compounds such as carbon dioxide, carbonate ion, and bicarbonate ion, together referenced as dissolved inorganic carbon (DIC). These inorganic compounds are particularly significant in ocean acidification, as they include many forms of dissolved CO 2 present in the Earth's oceans. When CO 2 dissolves, it reacts with water to form a balance of ionic and non-ionic chemical species: dissolved free carbon dioxide (CO 2(aq)), carbonic acid (H2CO3), bicarbonate (HCO−3) and carbonate (CO2−3). The ratio of these species depends on factors such as seawatertemperature, pressure and salinity (as shown in a Bjerrum plot). These different forms of dissolved inorganic carbon are transferred from an ocean's surface to its interior by the ocean's solubility pump. The resistance of an area of ocean to absorbing atmospheric CO 2 is known as the Revelle factor. The ocean's chemistry is changing due to the uptake of anthropogenic carbon dioxide (CO2).[4][17]: 395 Ocean pH, carbonate ion concentrations ([CO32−]), and calcium carbonate mineral saturation states (Ω) have been declining as a result of the uptake of approximately 30% of the anthropogenic carbon dioxide emissions over the past 270 years (since around 1750). This process, commonly referred to as "ocean acidification", is making it harder for marine calcifiers to build a shell or skeletal structure, endangering coral reefs and the broader marine ecosystems.[4] Ocean acidification has been called the "evil twin of global warming" and "the other CO2 problem".[18][19] Increased ocean temperatures and oxygen loss act concurrently with ocean acidification and constitute the "deadly trio" of climate change pressures on the marine environment.[20] The impacts of this will be most severe for coral reefs and other shelled marine organisms,[21][22] as well as those populations that depend on the ecosystem services they provide.
Reduction in pH value Dissolving CO2 in seawater increases the hydrogen ion (H+ ) concentration in the ocean, and thus decreases ocean pH, as follows: CO2(aq) + H2O ⇌ H2CO3⇌ HCO3− + H+⇌ CO32− + 2 H+. In shallow coastal and shelf regions, a number of factors interplay to affect air-ocean CO2 exchange and resulting pH change.These include biological processes, such as photosynthesis and respiration, as well as water upwelling.[27] Also, ecosystem metabolism in freshwater sources reaching coastal waters can lead to large, but local, pH changes. Freshwater bodies also appear to be acidifying, although this is a more complex and less obvious phenomenon. The absorption of CO2 from the atmosphere does not affect the ocean's alkalinity. This is important to know in this context as alkalinity is the capacity of water to resist acidification.Ocean alkalinity enhancement has been proposed as one option to add alkalinity to the ocean and therefore buffer against pH changes.
Decreased calcification in marine organisms
Changes in ocean chemistry can have extensive direct and indirect effects on organisms and their habitats. One of the most important repercussions of increasing ocean acidity relates to the production of shells out of calcium carbonate (CaCO3).[3] This process is called calcification and is important to the biology and survival of a wide range of marine organisms. Calcification involves the precipitation of dissolved ions into solid CaCO3 structures, structures for many marine organisms, such as coccolithophores, foraminifera, crustaceans, mollusks, etc. After they are formed, these CaCO3 structures are vulnerable to dissolution unless the surrounding seawater contains saturating concentrations of carbonate ions (CO2−3). Very little of the extra carbon dioxide that is added into the ocean remains as dissolved carbon dioxide. The majority dissociates into additional bicarbonate and free hydrogen ions. The increase in hydrogen is larger than the increase in bicarbonate,[32] creating an imbalance in the reaction: HCO−3⇌ CO2−3+ H+ To maintain chemical equilibrium, some of the carbonate ions already in the ocean combine with some of the hydrogen ions to make further bicarbonate. Thus the ocean's concentration of carbonate ions is reduced, removing an essential building block for marine organisms to build shells, or calcify: Ca2+ + CO2−3 ⇌ CaCO3 The increase in concentrations of dissolved carbon dioxide and bicarbonate, and reduction in carbonate, are shown in the Bjerrum plot. The saturation state (known as Ω) of seawater for a mineral is a measure of the thermodynamic potential for the mineral to form or to dissolve, and for calcium carbonate is described by the following equation:
Here Ω is the product of the concentrations (or activities) of the reacting ions that form the mineral (Ca2+ and CO2−3), divided by the apparent solubility product at equilibrium (Ksp), that is, when the rates of precipitation and dissolution are equal In seawater, dissolution boundary is formed as a result of temperature, pressure, and depth, and is known as the saturation horizon.Above this saturation horizon, Ω has a value greater than 1, and CaCO 3 does not readily dissolve. Most calcifying organisms live in such waters. Below this depth, Ω has a value less than 1, and CaCO 3 will dissolve. The carbonate compensation depth is the ocean depth at which carbonate dissolution balances the supply of carbonate to sea floor, therefore sediment below this depth will be void of calcium carbonate. Increasing CO2 levels, and the resulting lower pH of seawater, decreases the concentration of CO32− and the saturation state of CaCO 3 therefore increasing CaCO 3 dissolution. Calcium carbonate most commonly occurs in two common polymorphs (crystalline forms): aragonite and calcite. Aragonite is much more soluble than calcite, so the aragonite saturation horizon, and aragonite compensation depth, is always nearer to the surface than the calcite saturation horizon.This also means that those organisms that produce aragonite may be more vulnerable to changes in ocean acidity than those that produce calcite. Ocean acidification and the resulting decrease in carbonate saturation states raise the saturation horizons of both forms closer to the surface.This decrease in saturation state is one of the main factors leading to decreased calcification in marine organisms because the inorganic precipitation of CaCO 3 is directly proportional to its saturation state and calcifying organisms exhibit stress in waters with lower saturation states.
Climate feedbacks
Already now large quantities of water undersaturated in aragonite are upwelling close to the Pacific continental shelf area of North America, from Vancouver to Northern California.[39] These continental shelves play an important role in marine ecosystems, since most marine organisms live or are spawned there. Other shelf areas may be experiencing similar effects. At depths of 1000s of meters in the ocean, calcium carbonate shells begin to dissolve as increasing pressure and decreasing temperature shift the chemical equilibria controlling calcium carbonate precipitation.[40] The depth at which this occurs is known as the carbonate compensation depth. Ocean acidification will increase such dissolution and shallow the carbonate compensation depth on timescales of tens to hundreds of years.[40] Zones of downwelling are being affected first. In the North Pacific and North Atlantic, saturation states are also decreasing (the depth of saturation is getting more shallow). Ocean acidification is progressing in the open ocean as the CO2 travels to deeper depth as a result of ocean mixing. In the open ocean, this causes carbonate compensation depths to become more shallow, meaning that dissolution of calcium carbonate will occur below those depths. In the North Pacific these carbonate saturations depths are shallowing at a rate of 1-2 m per year. It is expected that ocean acidification in the future will lead to a significant decrease in the burial of carbonate sediments for several centuries, and even the dissolution of existing carbonate sediments.
Between 1950 and 2020, the average pH value of the ocean surface is estimated to have decreased from approximately 8.15 to 8.05.[2] This represents an increase of around 26% in hydrogen ion concentration in the world's oceans (the pH scale is logarithmic, so a change of one in pH unit is equivalent to a tenfold change in hydrogen ion concentration).[44] For example, in the 15-year period 1995–2010 alone, acidity has increased 6 percent in the upper 100 meters of the Pacific Ocean from Hawaii to Alaska.[45] The IPCC Sixth Assessment Report in 2021 stated that "present-day surface pH values are unprecedented for at least 26,000 years and current rates of pH change are unprecedented since at least that time. The pH value of the ocean interior has declined over the last 20-30 years everywhere in the global ocean. The report also found that "pH in open ocean surface water has declined by about 0.017 to 0.027 pH units per decade since the late 1980s". The rate of decline differs by region. This is due to complex interactions between different types of forcing mechanisms: "In the tropical Pacific, its central and eastern upwelling zones exhibited a faster pH decline of minus 0.022 to minus 0.026 pH unit per decade." This is thought to be "due to increased upwelling of CO2-rich sub-surface waters in addition to anthropogenic CO2 uptake." Some regions exhibited a slower acidification rate: a pH decline of minus 0.010 to minus 0.013 pH unit per decade has been observed in warm pools in the western tropical Pacific. The rate at which ocean acidification will occur may be influenced by the rate of surface ocean warming, because warm waters will not absorb as much CO2. Therefore, greater seawater warming could limit CO2 absorption and lead to a smaller change in pH for a given increase in CO2.[48] The difference in changes in temperature between basins is one of the main reasons for the differences in acidification rates in different localities. Current rates of ocean acidification have been likened to the greenhouse event at the Paleocene–Eocene boundary (about 56 million years ago), when surface ocean temperatures rose by 5–6 degrees Celsius. In that event, surface ecosystems experienced a variety of impacts, but bottom-dwelling organisms in the deep ocean actually experienced a major extinction.Currently, the rate of carbon addition to the atmosphere-ocean system is about ten times the rate that occurred at the Paleocene–Eocene boundary. Extensive observational systems are now in place or being built for monitoring seawater CO2 chemistry and acidification for both the global open ocean and some coastal systems.
Geologic past
Ocean acidification has occurred previously in Earth's history. It happened during the Capitanian mass extinction, at the end-Permian extinction,during the end-Triassic extinction,and during the Cretaceous–Palaeogene extinction event. Three of the big five mass extinction events in the geologic past were associated with a rapid increase in atmospheric carbon dioxide, probably due to volcanism and/or thermal dissociation of marine gas hydrates.Elevated CO2 levels impacted biodiversity.Decreased CaCO3 saturation due to seawater uptake of volcanogenic CO2 has been suggested as a possible kill mechanism during the marine mass extinction at the end of the Triassic.The end-Triassic biotic crisis is still the most well-established example of a marine mass extinction due to ocean acidification, because (a) carbon isotope records suggest enhanced volcanic activity that decreased the carbonate sedimentation which reduced the carbonate compensation depth and the carbonate saturation state, and a marine extinction coincided precisely in the stratigraphic record,and (b) there was pronounced selectivity of the extinction against organisms with thick aragonitic skeletons,which is predicted from experimental studies.Ocean acidification has also been suggested as a one cause of the end-Permian mass extinctionand the end-Cretaceous crisis. Overall, multiple climatic stressors, including ocean acidification, was likely the cause of geologic extinction events. The most notable example of ocean acidification is the Paleocene-Eocene Thermal Maximum (PETM), which occurred approximately 56 million years ago when massive amounts of carbon entered the ocean and atmosphere, and led to the dissolution of carbonate sediments across many ocean basins.Relatively new geochemical methods of testing for pH in the past indicate the pH dropped 0.3 units across the PETM.One study that solves the marine carbonate system for saturation state shows that it may not change much over the PETM, suggesting the rate of carbon release at our best geological analogy was much slower than human-induced carbon emissions. However, stronger proxy methods to test for saturation state are needed to assess how much this pH change may have affected calcifying organisms.
Predictions
An important aspect to realize with ocean acidification that is happening today is that the rate of change is much higher than the geologic past. This higher rate of change is what prevents organisms from gradually adapting, or for climate cycle feedbacks to kick in to mitigate ocean acidification. Current ocean acidification is now on a path to reach lower pH levels than at any other point in the last 300 million years.The rate of ocean acidification (i.e. the speed of change in pH value) is also estimated to be unprecedented over that same time scale. These expected changes are considered unprecedented in the geological record. In combination with other ocean biogeochemical changes, this drop in pH value could undermine the functioning of marine ecosystems and disrupt the provision of many goods and services associated with the ocean beginning as early as 2100. The extent of further ocean chemistry changes, including ocean pH, will depend on climate change mitigation efforts taken by nations and their governments.Different scenarios of projected socioeconomic global changes are modelled by using the Shared Socioeconomic Pathways (SSP) scenarios. Under a very high emission scenario (SSP5-8.5), model projections estimate that surface ocean pH could decrease by as much as 0.44 units by the end of this century, compared to the end of the 19th century. This would mean a pH as low as about 7.7, and represents a further increase in H+ concentrations of two to four times beyond the increase to date.
Complexity
The full ecological consequences of the changes in calcification due to ocean acidification are complex but it appears likely that many calcifying species will be adversely affected by ocean acidification.Increasing ocean acidification makes it more difficult for shell-accreting organisms to access carbonate ions, essential for the production of their hard exoskeletal shell.Oceanic calcifying organism span the food chain from autotrophs to heterotrophs and include organisms such as coccolithophores, corals, foraminifera, echinoderms, crustaceans and molluscs. Overall, all marine ecosystems on Earth will be exposed to changes in acidification and several other ocean biogeochemical changes. Ocean acidification may force some organisms to reallocate resources away from productive endpoints in order to maintain calcification.For example, the oyster Magallana gigas is recognized to experience metabolic changes alongside altered calcification rates due to energetic tradeoffs resulting from pH imbalances. Under normal conditions, calcite and aragonite are stable in surface waters since the carbonate ions are supersaturated with respect to seawater. However, as ocean pH falls, the concentration of carbonate ions also decreases. Calcium carbonate thus becomes undersaturated, and structures made of calcium carbonate are vulnerable to calcification stress and dissolution. In particular, studies show that corals,coccolithophores,coralline algae, foraminifera, shellfish and pteropods experience reduced calcification or enhanced dissolution when exposed to elevated CO2. Even with active marine conservation practices it may be impossible to bring back many previous shellfish populations. Some studies have found different responses to ocean acidification, with coccolithophore calcification and photosynthesis both increasing under elevated atmospheric pCO2, and an equal decline in primary production and calcification in response to elevated CO2, or the direction of the response varying between species. Similarly, the sea star, Pisaster ochraceus, shows enhanced growth in waters with increased acidity. Reduced calcification from ocean acidification may affect the ocean's biologically driven sequestration of carbon from the atmosphere to the ocean interior and seafloor sediment, weakening the so-called biological pump.Seawater acidification could also reduce the size of Antarctic phytoplankton, making them less effective at storing carbon.Such changes are being increasingly studied and synthesized through the use of physiological frameworks, including the Adverse Outcome Pathway (AOP) framework.
Corals
A coccolithophore is a unicellular, eukaryoticphytoplankton (alga). Understanding calcification changes in coccolithophores may be particularly important because a decline in the coccolithophores may have secondary effects on climate: it could contribute to global warming by decreasing the Earth's albedo via their effects on oceanic cloud cover. A study in 2008 examining a sediment core from the North Atlantic found that while the species composition of coccolithophorids remained unchanged for the industrial period 1780 to 2004, the calcification of coccoliths has increased by up to 40% during the same time.
Warm water corals are clearly in decline, with losses of 50% over the last 30-50 years due to multiple threats from ocean warming, ocean acidification, pollution and physical damage from activities such as fishing, and these pressures are expected to intensify. The fluid in the internal compartments (the coelenteron) where corals grow their exoskeleton is also extremely important for calcification growth. When the saturation state of aragonite in the external seawater is at ambient levels, the corals will grow their aragonite crystals rapidly in their internal compartments, hence their exoskeleton grows rapidly. If the saturation state of aragonite in the external seawater is lower than the ambient level, the corals have to work harder to maintain the right balance in the internal compartment. When that happens, the process of growing the crystals slows down, and this slows down the rate of how much their exoskeleton is growing. Depending on the aragonite saturation state in the surrounding water, the corals may halt growth because pumping aragonite into the internal compartment will not be energetically favorable. Under the current progression of carbon emissions, around 70% of North Atlantic cold-water corals will be living in corrosive waters by 2050–60. Acidified conditions primarily reduce the coral's capacity to build dense exoskeletons, rather than affecting the linear extension of the exoskeleton. The density of some species of corals could be reduced by over 20% by the end of this century. An in situ experiment, conducted on a 400 m2 patch of the Great Barrier Reef, to decrease seawater CO2 level (raise pH) to near the preindustrial value showed a 7% increase in net calcification. A similar experiment to raise in situ seawater CO2 level (lower pH) to a level expected soon after the 2050 found that net calcification decreased 34%. However, a field study of the coral reef in Queensland and Western Australia from 2007 to 2012 found that corals are more resistant to the environmental pH changes than previously thought, due to internal homeostasis regulation; this makes thermal change (marine heatwaves), which leads to coral bleaching, rather than acidification, the main factor for coral reef vulnerability due to climate change.
In some places carbon dioxide bubbles out from the sea floor, locally changing the pH and other aspects of the chemistry of the seawater. Studies of these carbon dioxide seeps have documented a variety of responses by different organisms. Coral reef communities located near carbon dioxide seeps are of particular interest because of the sensitivity of some corals species to acidification. In Papua New Guinea, declining pH caused by carbon dioxide seeps is associated with declines in coral species diversity. However, in Palau carbon dioxide seeps are not associated with reduced species diversity of corals, although bioerosion of coral skeletons is much higher at low pH sites.
Pteropods and brittle stars both form the base of the Arctic food webs and are both seriously damaged from acidification. Pteropods shells dissolve with increasing acidification and the brittle stars lose muscle mass when re-growing appendages.[113] For pteropods to create shells they require aragonite which is produced through carbonate ions and dissolved calcium and strontium. Pteropods are severely affected because increasing acidification levels have steadily decreased the amount of water supersaturated with carbonate.The degradation of organic matter in Arctic waters has amplified ocean acidification; some Arctic waters are already undersaturated with respect to aragonite. The brittle star's eggs die within a few days when exposed to expected conditions resulting from Arctic acidification.Similarly, when exposed in experiments to pH reduced by 0.2 to 0.4, larvae of a temperate brittle star, a relative of the common sea star, fewer than 0.1 percent survived more than eight days. Aside from the slowing and/or reversal of calcification, organisms may suffer other adverse effects, either indirectly through negative impacts on food resources, or directly as reproductive or physiological effects.[3] For example, the elevated oceanic levels of CO2 may produce CO 2-induced acidification of body fluids, known as hypercapnia.
Acoustic properties of Hydrogen Obelisks Introducing Fibonacci Sequence into the oceans
Increasing acidity has been observed to reduce metabolic rates in jumbo squid and depress the immune responses of blue mussels. This is possibly because ocean acidification may alter the acoustic properties of seawater, allowing sound to propagate further, and increasing ocean noise.This impacts all animals that use sound for echolocation or communication.Atlantic longfin squid eggs took longer to hatch in acidified water, and the squid's statolith was smaller and malformed in animals placed in sea water with a lower pH. However, these studies are ongoing and there is not yet a full understanding of these processes in marine organisms or ecosystems. Acusuit properties of the Obelisk with increased magnetism may bring homeostasis to the oceans and it’s creatures. At least we won’t have whales beaching themselves because they can’t hear themselves so sad. Whale suicide. Harmful algal bloom events, which could contribute to the accumulation of toxins (domoic acid, brevetoxin, saxitoxin) in small organisms such as anchovies and shellfish, in turn increasing occurrences of amnesic shellfish poisoning, neurotoxic shellfish poisoning and paralytic shellfish poisoning.Although algal blooms can be harmful, other beneficial photosynthetic organisms may benefit from increased levels of carbon dioxide. Most importantly, seagrasses will benefit. Research found that as seagrasses increased their photosynthetic activity, calcifying algae's calcification rates rose, likely because localized photosynthetic activity absorbed carbon dioxide and elevated local pH.
Ocean acidification can also have affects on marine fish larvae. It internally affects their olfactory systems, which is a crucial part of their development, especially in the beginning stage of their life. Orange clownfish larvae mostly live on oceanic reefs that are surrounded by vegetative islands.With the use of their sense of smell, larvae are known to be able to detect the differences between reefs surrounded by vegetative islands and reefs not surrounded by vegetative islands.Clownfish larvae need to be able to distinguish between these two destinations to have the ability to locate an area that is satisfactory for their growth. Another use for marine fish olfactory systems is to help in determining the difference between their parents and other adult fish in order to avoid inbreeding. In an experimental aquarium facility, clownfish were sustained in non-manipulated seawater that obtained a pH of 8.15 ± 0.07 which is similar to our current ocean's pH. To test for effects of different pH levels, seawater was manipulated to three different pH levels, including the non-manipulated pH. The two opposing pH levels correspond with climate change models that predict future atmospheric CO2 levels. In the year 2100 the model predicts that we could potentially acquire CO2 levels at 1,000 ppm, which correlates with the pH of 7.8 ± 0.05. Results of this experiment show that when larvae is exposed to a pH of 7.8 ± 0.05 their reaction to environmental cues differs drastically to larvae's reaction to cues in a non-manipulated pH. At the pH of 7.6 ± 0.05 larvae had no reaction to any type of cue. However, a meta-analysis published in 2022 found that the effect sizes of published studies testing for ocean acidification effects on fish behavior have declined by an order of magnitude over the past decade and have been negligible for the past five years.
Eel embryos, a "critically endangered" species yet profound in aquaculture, are also being affected by ocean acidification, specifically the European eel. Although they spend most of their lives in fresh water, usually in rivers, streams, or estuaries, they go to spawn and die in the Sargasso Sea. Here is where European eels are experiencing the effects of acidification in one of their key life stages. Fish embryos and larvae are usually more sensitive to pH changes than adults, as organs for pH regulation are not full developed. Because of this, European eel Embryos are more vulnerable to changes in pH in the Sargasso Sea. A study of the European Eel in the Sargasso Sea was conducted in 2021 to analyze the specific effects ocean acidification had on embryos. The study found that exposure to predicted end-of-century ocean pCO2 conditions may affect normal development of this species in nature during sensitive early life history stages with limited physiological response capacities, while extreme acidification will negatively influence embryonic survival and development under hatchery conditions.
Compounded effects of acidification, warming and deoxygenation
There is a substantial body of research showing that a combination of ocean acidification and elevated ocean temperature have a compounded effect on marine life and the ocean environment. This effect far exceeds the individual harmful impact of either. In addition, ocean warming, along with increased productivity of phytoplankton from higher CO2 levels exacerbates ocean deoxygenation. Deoxygenation of ocean waters is an additional stressor on marine organisms that increases ocean stratification therefore limiting nutrients over time and reducing biological gradients. Meta analyses have quantified the direction and magnitude of the harmful effects of combined ocean acidification, warming and deoxygenation on the ocean. These meta-analyses have been further tested by mesocosm studies that simulated the interaction of these stressors and found a catastrophic effect on the marine food web: thermal stress more than negates any primary producer to herbivore increase in productivity from elevated CO2. The increase of ocean acidity decelerates the rate of calcification in salt water, leading to smaller and slower growing coral reefs which supports approximately 25% of marine life.Impacts are far-reaching from fisheries and coastal environments down to the deepest depths of the ocean.The increase in ocean acidity in not only killing the coral, but also the wildly diverse population of marine inhabitants which coral reefs support.
The threat of acidification includes a decline in commercial fisheries and the coast-based tourism industry. Several ocean goods and services are likely to be undermined by future ocean acidification potentially affecting the livelihoods of some 400 to 800 million people, depending upon the greenhouse gas emission scenario. Some 1 billion people are wholly or partially dependent on the fishing, tourism, and coastal management services provided by coral reefs. Ongoing acidification of the oceans may therefore threaten future food chains linked with the oceans.
In the Arctic, commercial fisheries are threatened because acidification harms calcifying organisms which form the base of the Arctic food webs (pteropods and brittle stars, see above). Acidification threatens Arctic food webs from the base up. Arctic food webs are considered simple, meaning there are few steps in the food chain from small organisms to larger predators. For example, pteropods are "a key prey item of a number of higher predators – larger plankton, fish, seabirds, whales".Both pteropods and sea stars serve as a substantial food source and their removal from the simple food web would pose a serious threat to the whole ecosystem. The effects on the calcifying organisms at the base of the food webs could potentially destroy fisheries.
The value of fish caught from US commercial fisheries in 2007 was valued at $3.8 billion and of that 73% was derived from calcifiers and their direct predators.[146] Other organisms are directly harmed as a result of acidification. For example, decrease in the growth of marine calcifiers such as the American lobster, ocean quahog, and scallops means there is less shellfish meat available for sale and consumption.[147] Red king crab fisheries are also at a serious threat because crabs are also calcifiers. Baby red king crab when exposed to increased acidification levels experienced 100% mortality after 95 days.[148] In 2006, red king crab accounted for 23% of the total guideline harvest levels and a serious decline in red crab population would threaten the crab harvesting industry.
Reducing carbon dioxide emissions (i.e. climate change mitigation measures) is the only solution that addresses the root cause of ocean acidification. For example, some mitigation measures focus on carbon dioxide removal (CDR) from the atmosphere (e.g. direct air capture (DAC), bioenergy with carbon capture and storage (BECCS)). These would also slow the rate of acidification. Approaches that remove carbon dioxide from the ocean include ocean nutrient fertilization, artificial upwelling/downwelling, seaweed farming, ecosystem recovery, ocean alkalinity enhancement, enhanced weathering and electrochemical processes. All of these methods use the ocean to remove CO2 from the atmosphere to store it in the ocean. These methods could assist with mitigation but they can have side-effects on marine life. The research field for all CDR methods has grown a lot since 2019. In total, "ocean-based methods have a combined potential to remove 1–100 gigatons of CO2 per year". Their costs are in the order of USD40–500 per ton of CO2. For example, enhanced weathering could remove 2–4 gigatons of CO2 per year. This technology comes with a cost of 50-200 USD per ton of CO2.
Carbon removal technologies which add alkalinity
Some carbon removal techniques add alkalinity to the ocean and therefore immediately buffer pH changes which might help the organisms in the region that the extra alkalinity is added to. The two technologies that fall into this category are ocean alkalinity enhancement and electrochemical methods. Eventually, due to diffusion, that alkalinity addition will be quite small to distant waters. This is why the term local ocean acidification mitigation is used. Both of these technologies have the potential to operate on a large scale and to be efficient at removing carbon dioxide. However, they are expensive, have many risks and side effects and currently have a low technology readiness level.
Ocean alkalinity enhancement (OAE) is defined as "a proposed carbon dioxide removal (CDR) method that involves deposition of alkaline minerals or their dissociation products at the ocean surface". The process would increase surface total alkalinity. It would work to accelerate Earth's geologic carbon regulator. The process involves increasing the amount of bicarbonate (HCO3-) through accelerated weathering (enhanced weathering) of rocks (silicate, limestone and quicklime). This process mimics the silicate-carbonate cycle, and will ultimately draw down CO2 from the atmosphere into the ocean. The CO2 will either become bicarbonate, and be stored in the ocean in that form for more than 100 years, or may precipitate into calcium carbonate (CaCO3). When the calcium carbonate is buried in the deep ocean, it can store the carbon for approximately one million years when utilizing silicate rocks as the means to increase alkalinity. Enhanced weathering is a type of ocean alkalinity enhancement. Enhanced weathering will increase alkalinity by means of scatter fine particles of rocks. This can happen both on land and in the ocean (even though the ultimate fate affects the ocean). In addition to sequestering CO2, alkalinity addition buffers the pH of the ocean therefore reducing the degree of ocean acidification. However, little is known about how organisms will respond to added alkalinity, even from natural sources.For example, weathering of some silicate rocks could release a large amount of potentially trace metals into the ocean at the site of enhanced weathering. In addition, the cost and the energy consumed by implementing ocean alkalinity enhancement (mining, pulverizing, transport) is high compared to other CDR techniques. The cost of ocean alkalinity enhancement is estimated to be 20–50 USD per ton of CO2 (for "direct addition of alkaline minerals to the ocean"). Ocean alkalinity is not changed by ocean acidification, but over long time periods alkalinity may increase due to carbonate dissolution and reduced Electrochemical methods, or electrolysis, can strip carbon dioxide directly from seawater. Electrochemical process are a type of ocean alkalinity enhancement, too. Some methods focus on direct CO2 removal (in the form of carbonate and CO2 gas) while others increase the alkalinity of seawater by precipitating metal hydroxide residues, which absorbs CO2 in a matter described in the ocean alkalinity enhancement section. The hydrogen produced during direct carbon capture can then be upcycled to form hydrogen for energy consumption, or other manufactured laboratory reagents such as hydrochloric acid. However, implementation of electrolysis for carbon capture is expensive and the energy consumed for the process is high compared to other CDR techniques.In addition, research to assess the environmental impact of this process is ongoing. Some complications include toxic chemicals in wastewaters, and reduced DIC in effluents; both of these may negatively impact marine life.
Global policies
As awareness about ocean acidification grows, policies geared towards increasing monitoring efforts of ocean acidification have been drafted.[154] Previously in 2015, ocean scientist Jean-Pierre Gattuso had remarked that "The ocean has been minimally considered at previous climate negotiations. Our study provides compelling arguments for a radical change at the UN conference (in Paris) on climate change". International efforts, such as the UN Cartagena Convention (entered into force in 1986),are critical to enhance the support provided by regional governments to highly vulnerable areas to ocean acidification. Many countries, for example in the Pacific Islands and Territories, have constructed regional policies, or National Ocean Policies, National Action Plans, National Adaptation Plans of Action and Joint National Action Plans on Climate Change and Disaster Risk Reduction, to help work towards SDG 14. Ocean acidification is now starting to be considered within those frameworks.
The UN Ocean Decade has a program called "Ocean acidification research for sustainability". It was proposed by the Global Ocean Acidification Observing Network (GOA-ON) and its partners, and has been formally endorsed as a program of the UN Decade of Ocean Science for Sustainable Development.The OARS program builds on the work of GOA-ON and has the following aims: to further develop the science of ocean acidification; to increase observations of ocean chemistry changes; to identify the impacts on marine ecosystems on local and global scales; and to provide decision makers with the information needed to mitigate and adapt to ocean acidification.
The importance of ocean acidification is reflected in its inclusion as one of seven Global Climate Indicators.These Indicators are a set of parameters that describe the changing climate without reducing climate change to only rising temperature. The Indicators include key information for the most relevant domains of climate change: temperature and energy, atmospheric composition, ocean and water as well as the cryosphere. The Global Climate Indicators have been identified by scientists and communication specialists in a process led by Global Climate Observing System (GCOS).[161] The Indicators have been endorsed by the World Meteorological Organization (WMO). They form the basis of the annual WMO Statement of the State of the Global Climate, which is submitted to the Conference of Parties (COP) of the United Nations Framework Convention on Climate Change (UNFCCC). Additionally, the Copernicus Climate Change Service (C3S) of the European Commission uses the Indicators for their annual "European State of the Climate".
In 2015, the United Nations adopted the 2030 Agenda and a set of 17 Sustainable Development Goals (SDG), including a goal dedicated to the ocean, Sustainable Development Goal 14, which calls to "conserve and sustainably use the oceans, seas and marine resources for sustainable development". Ocean acidification is directly addressed by the target SDG 14.3. The full title of Target 14.3 is: "Minimize and address the impacts of ocean acidification, including through enhanced scientific cooperation at all levels".This target has one indicator: Indicator 14.3.1 which calls for the "Average marine acidity (pH) measured at agreed suite of representative sampling stations". The Intergovernmental Oceanographic Commission (IOC) of UNESCO was identified as the custodian agency for the SDG 14.3.1 Indicator. In this role, IOC-UNESCO is tasked with developing the SDG 14.3.1 Indicator Methodology, the annual collection of data towards the SDG 14.3.1 Indicator and the reporting of progress to the United Nations.
In the United States, the Federal Ocean Acidification Research And Monitoring Act of 2009 supports government coordination, such as the National Oceanic Atmospheric Administration's (NOAA) "Ocean Acidification Program".In 2015, USEPA denied a citizens petition that asked EPA to regulate CO2 under the Toxic Substances Control Act of 1976 in order to mitigate ocean acidification.In the denial, the EPA said that risks from ocean acidification were being "more efficiently and effectively addressed" under domestic actions, e.g., under the Presidential Climate Action Plan, and that multiple avenues are being pursued to work with and in other nations to reduce emissions and deforestation and promote clean energy and energy efficiency. Research into the phenomenon of ocean acidification, as well as awareness raising about the problem, has been going on for several decades. The fundamental research really began with the creation of the pH scale by Danish chemist Søren Peder Lauritz Sørensen in 1909.[171] By around the 1950s the massive role of the ocean in absorbing fossil fuel CO2 was known to specialists, but not appreciated by the greater scientific community.Throughout much of the 20th century, the dominant focus has been the beneficial process of oceanic CO2 uptake, which has enormously ameliorated climate change. The concept of "too much of a good thing" has been late in developing and was triggered only by some key events, and the oceanic sink for heat and CO2 is still critical as the primary buffer against climate change. In the early 1970s questions over the long-term impact of the accumulation of fossil fuel CO2 in the sea were already arising around the world and causing strong debate. Researchers commented on the accumulation of fossil CO2 in the atmosphere and sea and drew attention to the possible impacts on marine life. By the mid-1990s, the likely impact of CO2 levels rising so high with the inevitable changes in pH and carbonate ion became a concern of scientists studying the fate of coral reefs.[172] By the end of the 20th century the trade-offs between the beneficial role of the ocean in absorbing some 90 % of all heat created, and the accumulation of some 50 % of all fossil fuel CO2 emitted, and the impacts on marine life were becoming more clear. By 2003, the time of planning for the "First Symposium on the Ocean in a High-CO2 World" meeting to be held in Paris in 2004, many new research results on ocean acidification were published. In 2009, members of the InterAcademy Panel called on world leaders to "Recognize that reducing the build up of CO2 in the atmosphere is the only practicable solution to mitigating ocean acidification".The statement also stressed the importance to "Reinvigorate action to reduce stressors, such as overfishing and pollution, on marine ecosystems to increase resilience to ocean acidification". For example, research in 2010 found that in the 15-year period 1995–2010 alone, acidity had increased 6 percent in the upper 100 meters of the Pacific Ocean from Hawaii to Alaska. According to a statement in July 2012 by Jane Lubchenco, head of the U.S. National Oceanic and Atmospheric Administration "surface waters are changing much more rapidly than initial calculations have suggested. It's yet another reason to be very seriously concerned about the amount of carbon dioxide that is in the atmosphere now and the additional amount we continue to put out." A 2013 study found acidity was increasing at a rate 10 times faster than in any of the evolutionary crises in Earth's history. The "Third Symposium on the Ocean in a High-CO2 World" took place in Monterey, California, in 2012. The summary for policy makers from the conference stated that "Ocean acidification research is growing rapidly". In a synthesis report published in Science in 2015, 22 leading marine scientists stated that CO2 from burning fossil fuels is changing the oceans' chemistry more rapidly than at any time since the Great Dying (Earth's most severe known extinction event).Their report emphasized that the 2 °C maximum temperature increase agreed upon by governments reflects too small a cut in emissions to prevent "dramatic impacts" on the world's oceans.